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Abstract. We study two-body charmless hadronic decays of B mesons to a pseudoscalar meson (P ) and a
tensor meson (T ) in the frameworks of both flavor SU(3) symmetry and generalized factorization. Certain
ways to test the validity of the generalized factorization are proposed, based on the flavor SU(3) analysis.
We present a set of relations between a flavor SU(3) amplitude and the corresponding amplitude in the
generalized factorization which bridge both approaches in B → PT decays. The branching ratios and CP
asymmetries are calculated using the full effective Hamiltonian including all the penguin operators and the
form factors obtained in the non-relativistic quark model of Isgur, Scora, Grinstein and Wise. We identify
the decay modes in which the branching ratios and CP asymmetries are expected to be relatively large.

1 Introduction

The CLEO Collaboration has reported new experimental
results on the branching ratios of a number of exclusive B
meson decay modes where B decays into a pair of pseu-
doscalars (P ), a vector (V ) and a pseudoscalar meson,
or a pair of vector mesons. Motivated by the new data,
much work has been done to understand those exclusive
hadronic B decays in the framework of the generalized fac-
torization, QCD factorization, or flavor SU(3) symmetry.
In the next few years B factories operating at SLAC and
KEK will provide plenty of new experimental data on B
decays. It is expected that an improved new bound will
be put on the branching ratios for various decay modes,
and that many decay modes with small branching ratios
will be observed for the first time. Thus more information
on rare decays of B mesons will be available soon.

There have been a few works [1–3] studying two-body
hadronic B decays involving a tensor meson T (JP = 2+)
in the final state using the non-relativistic quark model
of Isgur, Scora, Grinstein and Wise (ISGW) [4] with the
factorization ansatz. Most of them studied B decays in-
volving a b → c transition, to which only the tree dia-
gram contributes. In a recent work [3], the authors consid-
ered the Cabibbo-Kobayashi-Maskawa (CKM) suppressed
hadronic B decays involving a b→ u transition as well as
a b → c transition. However, they included only the tree
diagram contribution even in charmless B decays to PT
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and V T , such as B → η(′)a2 and B → φf
(′)
2 . In most

cases of the charmless ∆S = 0 processes, the dominant
contribution arises from the tree diagram and the contri-
butions from the penguin diagrams are very small. But in
some cases such as B → η(′)a2 and η(′)f (′)

2 , the penguin
diagrams could provide sizable contributions.

Furthermore, in the charmless |∆S| = 1 decay pro-
cesses, the penguin diagram contribution is enhanced by
the CKM matrix elements V ∗

tbVts and becomes dominant.
Experimentally several tensor mesons have been observed
[5], such as the isovector a2(1320), the isoscalars f2(1270),
f ′
2(1525), f2(2010), f2(2300), f2(2340), χc2(1P ), χb2(1P )
and χc2(2P ), the isospinors K∗

2 (1430) and D
∗
2(2460). Ex-

perimental data on the branching ratios for B decays in-
volving a pseudoscalar and a tensor meson in the final
state provide only upper bounds, as follows [5]:

B(B+(0) → π+D∗
2(2460)

0(−)) < 1.3(2.2) × 10−3,

B(B+ → π+K∗
2 (1430)

0) < 6.8 × 10−4,

B(B+ → π+f2(1270)) < 2.4 × 10−4,

B(B0 → π±a2(1320)∓) < 3.0 × 10−4. (1)

In this work, we analyze two-body charmless hadronic de-
cays of B mesons to a pseudoscalar meson and a tensor
meson in the frameworks of both flavor SU(3) symmetry
and generalized factorization. Purely based on the flavor
SU(3) symmetry, we first present a model-independent
analysis in B → PT decays. Then we use the full effective
Hamiltonian including all the penguin operators and the
ISGW quark model to calculate the branching ratios for
B → PT decays.



684 C.S. Kim et al.: Charmless hadronic decays of B mesons to a pseudoscalar and a tensor meson

Since we include both the tree and the penguin dia-
gram contributions to decay processes, we are able to cal-
culate the branching ratios for all the charmless |∆S| =
1 decays and the relevant CP asymmetries. In order to
bridge the flavor SU(3) approach and the factorization
approach, we present a set of relations between a flavor
SU(3) amplitude and the corresponding amplitude in fac-
torization in B → PT decays. Certain ways to test the
validity of the generalized factorization are proposed by
emphasizing the interplay between both approaches. We
organize this work as follows. In Sect. 2 we discuss the no-
tations for the SU(3) decomposition and the full effective
Hamiltonian for B decays. In Sect. 3 we present a model-
independent analysis of B → PT decays based on SU(3)
symmetry. In Sect. 4 the two-body decays B → PT are an-
alyzed in the framework of generalized factorization. The
branching ratios and CP asymmetries are calculated us-
ing the form factors obtained in the ISGW quark model.
Finally, in Sect. 5 our results are summarized.

2 Framework

In the flavor SU(3) approach, the decay amplitudes of two-
body B decays are decomposed into linear combinations
of the SU(3) amplitudes, which are the reduced matrix
elements defined in [6]. In the SU(3) decomposition of the
decay amplitudes of the B → PT processes, we choose the
notations given in [6–8] as follows: We represent the decay
amplitudes in terms of the basis of quark diagram con-
tributions, T (tree), C (color-suppressed tree), P (QCD-
penguin), S (additional penguin effect involving SU(3)
singlet mesons), E (exchange), A (annihilation), and PA
(penguin annihilation). The amplitudes E, A and PA may
be neglected to a good approximation because of a sup-
pression factor of fB/mB ≈ 5%. For later convenience we
also denote the electroweak (EW) penguin effects explic-
itly by PEW (color-favored EW penguin) and PC

EW (color-
suppressed EW penguin), even though in terms of quark
diagrams the inclusion of these EW penguin effects only
leads to the following replacement without introducing
new SU(3) amplitudes: T → T + PC

EW, C → C + PEW,
P → P − (1/3)PC

EW, S → S − (1/3)PEW. The phase con-
vention used for the pseudoscalar and the tensor mesons
is

π+(a+2 ) = ud̄, π0(a02) = − 1√
2
(uū− dd̄),

π−(a−
2 ) = −ūd, K+(K∗+

2 ) = us̄,

K0(K∗0
2 ) = ds̄, K̄0(K̄∗0

2 ) = d̄s,
K−(K∗−

2 ) = −ūs,
η = − 1√

3
(uū+ dd̄− ss̄),

η′ =
1√
6
(uū+ dd̄+ 2ss̄),

f2 =
1√
2
(uū+ dd̄) cosφT + (ss̄) sinφT ,

f ′
2 =

1√
2
(uū+ dd̄) sinφT − (ss̄) cosφT , (2)

where the mixing angle φT is given by φT = arctan(1/√
2) − 280 ≈ 70 [1,9]. In the factorization scheme, we

first consider the effective weak Hamiltonian. We then use
the generalized factorization approximation to derive the
hadronic matrix elements by saturating the vacuum state
in all possible ways. The method includes a color octet
non-factorizable contribution by treating ξ ≡ 1/Nc (Nc

denotes the effective number of color) as an adjustable pa-
rameter. The generalized factorization approximation has
been quite successfully used in two-body D decays as well
as B → D decays [10]. The effective weak Hamiltonian for
hadronic ∆B = 1 decays can be written as

Heff =
4GF√

2

[
VubV

∗
uq(c1O

u
1 + c2Ou

2 ) (3)

+VcbV
∗
cq(c1O

c
1 + c2O

c
2) − VtbV

∗
tq

12∑
i=3

ciOi

]
+H.C.,

where the Oi’s are defined by

Of
1 = (q̄γµLf)(f̄γµLb),

Of
2 = (q̄αγµLfβ)(f̄βγ

µLbα),
O3(5) = (q̄γµLb)(Σq̄′γµL(R)q′),

O4(6) = (q̄αγµLbβ)(Σq̄′βγ
µL(R)q′α),

O7(9) =
3
2
(q̄γµLb)(Σeq′ q̄′γµR(L)q′),

O8(10) =
3
2
(q̄αγµLbβ)(Σeq′ q̄′βγ

µR(L)q′α),

O11 =
gs

32π2mb(q̄σµνRT ab)Ga
µν ,

O12 =
e

32π2mb(q̄σµνRb)Fµν . (4)

Here the ci’s are the Wilson coefficients (WC’s) evaluated
at the renormalization scale µ. L(R) = (1∓γ5)/2, f can be
a u or c quark, q can be a d or s quark, and q′ is summed
over u, d, s, and c quarks. α and β are the SU(3) color
indices, and T a (a = 1, ..., 8) are the SU(3) generators
with the normalization Tr(T aT b) = δab/2. gs and e are
the strong and electric couplings, respectively. Ga

µν and
Fµν denote the gluonic and photonic field strength ten-
sors, respectively. O1 and O2 are the tree-level and QCD-
corrected operators. O3-6 are the gluon-induced strong
penguin operators. O7-10 are the EW penguin operators
due to γ and Z exchange, and box diagrams at loop level.
We shall take into account the chromomagnetic opera-
tor O11 but neglect the extremely small contribution from
O12. The dipole contribution is in general quite small, and
is of the order of 10% for penguin dominated modes. For
all the other modes it can be neglected [11].

We use the ISGW quark model to analyze two-body
charmless decay processes B → PT in the framework of
generalized factorization. We describe the parameteriza-
tions of the hadronic matrix elements in B → PT decays
[4]:
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〈0|Aµ|P 〉 = ifP p
µ
P , (5)

〈T |jµ|B〉 = ih(m2
P )ε

µνρσε∗ναp
α
B(pB + pT )ρ(pB − pT )σ

+k(m2
P )ε

∗µν(pB)ν + ε∗αβp
α
Bp

β
B (6)

×[b+(m2
P )(pB + pT )µ + b−(m2

P )(pB − pT )µ],

where jµ = V µ − Aµ. V µ and Aµ denote a vector and
an axial-vector current, respectively. fP denotes the de-
cay constant of the relevant pseudoscalar meson. h(m2

P ),
k(m2

P ), b+(m
2
P ), and b−(m

2
P ) express the form factors for

the B → T transition, FB→T (m2
P ), which have been cal-

culated at q2 = m2
P (qµ ≡ pµ

B − pµ
T ) in the ISGW quark

model [4]. pB and pT denote the momentum of the B me-
son and the tensor meson, respectively. The polarization
tensor εµν of the tensor meson T satisfies the following
properties [12]:

εµν(pT , λ) = ενµ(pT , λ), (7)
pµε

µν(pT , λ) = pνε
µν(pT , λ) = 0, (8)

εµµ(pT , λ) = 0, (9)

where λ is the helicity index of the tensor meson. We note
that due to the above properties of the polarization tensor,
the matrix element 〈0|jµ|T 〉 vanishes:

〈0|jµ|T 〉 = pνε
µν(pT , λ) + p

µ
T ε

ν
ν(pT , λ) = 0. (10)

Thus, in the generalized factorization scheme, the decay
amplitudes for B → PT can be considerably simplified,
compared to those for other two-body charmless decays
of B mesons such as B → PP , PV , and V V : Any decay
amplitude for B → PT is simply proportional to the de-
cay constant fP and a certain linear combination of the
form factors FB→T , i.e., there is no such amplitude pro-
portional to fT × FB→P .

3 Flavor SU(3) analysis of B → PT decays

We list the B → PT decay modes in terms of the SU(3)
amplitudes. The coefficients of the SU(3) amplitudes in
B → PT are listed in Tables 1 and 2 for strangeness-
conserving (∆S = 0) and strangeness-changing (|∆S| =
1) processes, respectively. In the tables, the unprimed and
the primed letters denote ∆S = 0 and |∆S| = 1 pro-
cesses, respectively. The subscript, P in TP , CP ,... or T in
TT , CT ,... on each SU(3) amplitude is used to describe the
particular case that the meson, which includes the specta-
tor quark in the corresponding quark diagram, is the pseu-
doscalar P or the tensor T . Note that the coefficients of the
SU(3) amplitudes with the subscript P , which would be
proportional to fT ×FB→P , are expressed in square brack-
ets. As explained in Sect. 2, the contributions of the SU(3)
amplitudes with the subscript P vanish in the framework
of factorization, because those contributions contain the
matrix element 〈T |Jweak

µ |0〉 which is zero; see (10).
Thus, it will be interesting to compare the results ob-

tained in the SU(3) analysis with those obtained in the
factorization scheme, as we shall see. We will present some

ways to test the validity of both schemes in future exper-
iments.

Among the ∆S = 0 amplitudes, the tree diagram con-
tribution is expected to be largest so that from Table 1 the
decays B+ → π+a02, π

+f2, and B0 → π+a−
2 are expected

to have the largest rates. Here we have noticed that in
B+ → π+f

(′)
2 decays, cosφT = 0.99 and sinφT = 0.13,

since the mixing angle φT ≈ 70. The amplitudes for the
processes B → KK∗

2 have only penguin diagram contribu-
tions, so they are expected to be small. In principle, the
penguin contribution (combined with the smaller color-
suppressed EW penguin) pT ≡ PT − (1/3)PEW,T can be
measured in B+(0) → K̄0K

∗+(0)
2 . The tree contribution

(combined with the much smaller color-suppressed EW
penguin) tT ≡ TT + PC

EW,T is measured by the combi-

nation A(B+(0) → K̄0K
∗+(0)
2 ) − A(B0 → π+a−

2 ). The
amplitudes for B0 → π0f ′

2, ηf
′
2, and η′f ′

2 have color-
suppressed tree contributions, CT (CP ), but are suppressed
by sinφ so that they are expected to be small. We shall
see that these expectations based on the SU(3) approach
are consistent with those calculated in the factorization
approximation. However, there exist some cases in which
the predictions based on both approaches are inconsistent.
Note that in Table 1 the amplitudes for B0 → π−a+2 and
B+(0) → K+(0)K̄∗0

2 can be decomposed into linear combi-
nations of the SU(3) amplitudes as follows:

A(B0 → π−a+2 ) = −TP − PP − (2/3)PC
EW,P , (11)

A(B+ → K+K̄∗0
2 ) = A(B0 → K0K̄∗0

2 )

= PP − (1/3)PC
EW,P . (12)

As previously explained, in factorization the rates for these
processes vanish because all the SU(3) amplitudes have
the subscript P .

Non-zero decay rates for these processes would arise
from non-factorizable effects or final state interactions.
Thus, in principle one can test the validity of the factor-
ization ansatz by measuring the rates for these decays in
future experiments. Therefore, the non-factorizable pen-
guin contribution, if it exists (combined with the smaller
color-suppressed EW penguin), pP ≡ PP − (1/3)PEW,P

can be measured in B+(0) → K̄+(0)K̄
∗+(0)
2 . Also, sup-

posing that PP is very small compared to TP as usual,
one can determine the magnitude of TP by measuring
the rate for B0 → π−a+2 . In the |∆S| = 1 decays, the
(strong) penguin contribution P ′ is expected to dominate
because of enhancement by the ratio of the CKM elements
|V ∗

tbVts|/|V ∗
ubVus| ≈ 50. We note that the amplitudes for

B+ → K0a+2 and B+ → π+K∗0
2 have only penguin con-

tributions, respectively, as follows:

A(B+ → K0a+2 ) = P
′
T − 1

3
PC′

EW,T , (13)

A(B+ → π+K∗0
2 ) = P ′

P − 1
3
PC′

EW,P . (14)

Thus the penguin contribution (combined with the smaller
color-suppressed EW penguin) p′

T ≡ P ′
T − (1/3)PC′

EW,T is
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Table 1. Coefficients of SU(3) amplitudes in B → PT (∆S = 0). The coefficients of the SU(3) amplitudes with the
subscript P are expressed in square brackets. As explained in Sect. 2, the contributions of the SU(3) amplitudes
with the subscript P vanish in the framework of factorization, because those contributions contain the matrix
element 〈T |Jweak

µ |0〉, which is zero. Here c and s denote cosφT and sinφT , respectively

B → PT factor TT [TP ] CT [CP ] PT [PP ] ST [SP ] PEW,T [PEW,P ] P C
EW,T [P C

EW,P ]

B+ → π+a0
2 − 1√

2
1 [1] 1, [−1] 0 [1] 2

3 ,
[ 1

3

]

B+ → π+f2
1√
2

c [c] c, [c] [2c +
√
2s]

[ 1
3 (c − √

2s)
]

2 c
3 ,

[− c
3

]

B+ → π+f ′
2

1√
2

s [s] s, [s] [2s − √
2c]

[ 1
3 (s +

√
2c)

]
2 s

3 ,
[− s

3

]

B+ → π0a+
2 − 1√

2
[1] 1 −1, [1] 0 1 1

3 ,
[ 2

3

]

B+ → ηa+
2 − 1√

3
[1] 1 1, [1] 1 2

3 − 1
3 ,

[ 2
3

]

B+ → η′a+
2

1√
6

[1] 1 1, [1] 4 − 1
3 − 1

3 ,
[ 2

3

]

B+ → K+K̄∗0
2 1 0 0 [1] 0 0

[− 1
3

]

B+ → K̄0K∗+
2 1 0 0 1 0 0 − 1

3

B0 → π+a−
2 −1 1 0 1 0 0 2

3

B0 → π−a+
2 −1 [1] 0 [1] 0 0

[ 2
3

]

B0 → π0a0
2

1
2 0 −1, [−1] 1, [1] 0 −1, [−1] − 1

3 ,
[− 1

3

]

B0 → π0f2 − 1
2 0 c, [−c] −c, [−c] [−(2c +

√
2s)] c,

[− 1
3 (c − √

2s)
]

c
3 ,

[
c
3

]

B0 → π0f ′
2 − 1

2 0 s, [−s] −s, [−s] [−(2s − √
2c)] s,

[− 1
3 (s +

√
2c)

]
s
3 ,

[
s
3

]

B0 → ηa0
2

1√
6

0 −1, [1] −1, [−1] −1 − 2
3 , [1]

1
3 ,

[ 1
3

]

B0 → ηf2 − 1√
6

0 c, [c] c, [c] c, [2c +
√
2s] 2 c

3 ,
[ 1

3 (c − √
2s)

] − c
3 ,

[− c
3

]

B0 → ηf ′
2 − 1√

6
0 s, [s] s, [s] s, [2s − √

2c] 2 s
3 ,

[ 1
3 (s +

√
2c)

] − s
3 ,

[− s
3

]

B0 → η′a0
2 − 1

2
√

3
0 −1, [1] −1, [−1] −4 1

3 , [1]
1
3 ,

[ 1
3

]

B0 → η′f2
1

2
√

3
0 c, [c] c, [c] 4c, [2c +

√
2s] − c

3 ,
[ 1

3 (c − √
2s)

] − c
3 ,

[− c
3

]

B0 → η′f ′
2

1
2
√

3
0 s, [s] s, [s] 4s, [2s − √

2c] − s
3 ,

[ 1
3 (s +

√
2c)

] − s
3 ,

[− s
3

]

B0 → K0K̄∗0
2 1 0 0 [1] 0 0

[− 1
3

]

B0 → K̄0K∗0
2 1 0 0 1 0 0 − 1

3

measured in B+ → K0a+2 . Similarly, p′
P ≡ P ′

P − (1/3)
PC′

EW,P is determined in B+ → π+K∗0
2 . (In fact, p′

P = 0
in factorization.) By comparing the branching ratios for
these two modes measured in experiment, one can deter-
mine which contribution (i.e., p′

T or p′
P ) is larger. The (ad-

ditional penguin) SU(3) singlet amplitude S′ is expected
to be very small because of the Okubo–Zweig–Iizuka (OZI)
suppression, but the SU(3) singlet amplitude S′ for the
decays involving the pseudoscalar mesons η and η′ is ex-
pected not to be very small, since the flavor-singlet cou-
plings of the η and η′ can be affected by the axial anomaly
[13]. Thus, from Table 2, one can expect that the processes
B+(0) → η′K∗+(0)

2 have large branching ratios compared
to other |∆S| = 1 decays, since they have both the pen-
guin contributions P ′ and S′ (and the smaller EW penguin
contributions P ′

EW and PC′
EW) and these contributions in-

terfere constructively like 2P ′
T + P ′

P + 4S′
T . In contrast,

the processes B+(0) → ηK
∗+(0)
2 have the penguin contri-

butions P ′ and S′, but these interfere destructively like
−P ′

T + P ′
P + S′

T . As in ∆S = 0 decays, there are certain
processes whose amplitudes can be expressed by the SU(3)
amplitudes, but which are expected to vanish in factoriza-
tion: For instance, A(B+ → π+K∗0

2 ) is given by (14) and
A(B0 → π−K∗+

2 ) = − (
T ′

P + P ′
P + (2/3)PC′

EW,P

)
. Thus,

in principle measurement of the rates for these decays
can be used to test the factorization ansatz. We also note

that the decay amplitudes for modes B+ → π0K∗+
2 and

B0 → π0K∗0
2 can be respectively written

A(B+ → π0K∗+
2 ) (15)

= − 1√
2

(
T ′

P + C ′
T + P ′

P + P ′
EW,T +

2
3
PC′

EW,P

)
,

A(B0 → π0K∗0
2 )

= − 1√
2

(
C ′

T − P ′
P + P ′

EW,T +
1
3
PC′

EW,P

)
. (16)

Since in factorization only the amplitudes having the sub-
script T do not vanish, we shall see that B(B+ → π0K∗+

2 )
= B(B0 → π0K∗0

2 ) in the factorization scheme, where
B denotes the branching ratio. Thus, if P ′

P or T ′
P is (not

zero and) not very suppressed compared to C ′
T , then there

would be a sizable discrepancy in the relation B(B+ →
π0K∗+

2 ) = B(B0 → π0K∗0
2 ), and in principle it can be

tested in experiment. From Tables 1 and 2, we find some
useful relations among the decay amplitudes. The equiva-
lence relations are

A(B+ → K+K̄∗0
2 ) = A(B0 → K0K̄∗0

2 ),
A(B+ → K̄0K∗+

2 ) = A(B0 → K̄0K∗0
2 ). (17)

The quadrangle relations are for the ∆S = 0 processes:
√
2A(B+ → η′a+2 ) +A(B

+ → ηa+2 )
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Table 2. Coefficients of SU(3) amplitudes in B → PT (|∆S| = 1)

B → PT factor T ′
T [T ′

P ] C′
T [C′

P ] P ′
T [P ′

P ] S′
T [S′

P ] P ′
EW,T [P ′

EW,P ] P C′
EW,T [P C′

EW,P ]

B+ → K+a0
2 − 1√

2
1 [1] 1 0 [1] 2

3

B+ → K+f2
1√
2

c [c] c, [
√
2s] [2c +

√
2s]

[ 1
3 (c − √

2s)
]

2 c
3 ,

[−√
2 s

3

]

B+ → K+f ′
2

1√
2

s [s] s, [−√
2c] [2s − √

2c]
[ 1

3 (s +
√
2c)

]
2 s

3 ,
[√

2 c
3

]

B+ → K0a+
2 1 0 0 1 0 0 − 1

3

B+ → π+K∗0
2 1 0 0 [1] 0 0

[− 1
3

]

B+ → π0K∗+
2 − 1√

2
[1] 1 [1] 0 1

[ 2
3

]

B+ → ηK∗+
2 − 1√

3
[1] 1 −1, [1] 1 2

3
1
3 ,

[ 2
3

]

B+ → η′K∗+
2

1√
6

[1] 1 2, [1] 4 − 1
3 − 2

3 ,
[ 2

3

]

B0 → K+a−
2 −1 1 0 1 0 0 2

3

B0 → K0a0
2 − 1√

2
0 [1] −1 0 [1] 1

3

B0 → K0f2
1√
2

0 [c] c, [
√
2s] [2c +

√
2s]

[ 1
3 (c − √

2s)
] − c

3 ,
[−√

2 s
3

]

B0 → K0f ′
2

1√
2

0 [s] s, [−√
2c] [2s − √

2c]
[ 1

3 (s +
√
2c)

] − s
3 ,

[√
2 c

3

]

B0 → π−K∗+
2 −1 [1] 0 [1] 0 0

[ 2
3

]

B0 → π0K∗0
2 − 1√

2
0 1 [−1] 0 1

[ 1
3

]

B0 → ηK∗0
2 − 1√

3
0 1 −1, [1] 1 2

3
1
3 ,

[− 1
3

]

B0 → η′K∗0
2

1√
6

0 1 2, [1] 4 − 1
3 − 2

3 ,
[− 1

3

]

= 2A(B0 → η′a02) +
√
2A(B0 → ηa02),

1
c
[A(B+ → π+f2) −

√
2A(B0 → π0f2)]

=
1
s
[A(B+ → π+f ′

2) −
√
2A(B0 → π0f ′

2)]

=
1
c
[
√
2A(B0 → η′f2) +A(B0 → ηf2)]

=
1
s
[
√
2A(B0 → η′f ′

2) +A(B
0 → ηf ′

2)], (18)

and for the |∆S| = 1 processes:
√
2A(B+ → K+a02) +A(B

+ → K0a+2 )

= A(B0 → K+a−
2 ) +

√
2A(B0 → K0a02),

1
c
[A(B+ → K+f2) −A(B0 → K0f2)]

=
1
s
[A(B+ → K+f ′

2) −A(B0 → K0f ′
2)],

A(B+ → π+K∗0
2 ) +

√
2A(B+ → π0K∗+

2 )

= A(B0 → π−K∗+
2 ) +

√
2A(B0 → π0K∗0

2 ),

A(B+ → ηK∗+
2 ) +

√
2A(B+ → η′K∗+

2 )

= A(B0 → ηK∗0
2 ) +

√
2A(B0 → η′K∗0

2 ), (19)

where c ≡ cosφT and s ≡ sinφT . Note that the above
relations are derived purely based on flavor SU(3) sym-
metry. In the factorization scheme (neglecting the SU(3)
amplitudes with the subscript P ) we would have in addi-
tion the approximate relations as follows1. The following
factorization relation would hold:

√
2A(B+ → π+a02) ≈ A(B0 → π+a−

2 ). (20)
1 Considering SU(3) breaking effects, we use the symbol ≈

in the following relations instead of the equivalence symbol =

The quadrangle relations given in (18) and (19) would be
divided into the following factorization relations: for the
∆S = 0 processes,

A(B+ → ηa+2 ) ≈
√
2A(B0 → ηa02)

≈ −
√
2A(B+ → η′a+2 )

≈ −2A(B0 → η′a02),
1
c
A(B+(0) → π+(0)f2) ≈ 1

s
A(B+(0) → π+(0)f ′

2),

1
c
A(B0 → ηf2) ≈ 1

s
A(B0 → ηf ′

2)

≈ −1
c

√
2A(B0 → η′f2)

≈ −1
s

√
2A(B0 → η′f ′

2), (21)

and for the |∆S| = 1 processes:
√
2A(B+ → K+a02) ≈ A(B0 → K+a−

2 ),

A(B+ → K0a+2 ) ≈
√
2A(B0 → K0a02),

1
c
A(B+ → K+f2) ≈ 1

s
A(B+ → K+f ′

2),

1
c
A(B0 → K0f2) ≈ 1

s
A(B0 → K0f ′

2),

A(B+ → π0K∗+
2 ) ≈ A(B0 → π0K∗0

2 ),

A(B+ → ηK∗+
2 ) ≈ A(B0 → ηK∗0

2 ),

A(B+ → η′K∗+
2 ) ≈ A(B0 → η′K∗0

2 ). (22)

Therefore, in principle the above relations given in (20),
(21) and (22) provide an interesting way to test the factor-
ization scheme by measuring and comparing magnitudes
of the decay amplitudes involved in the relations. In con-
sideration of SU(3) breaking effects, the relation in (20) is
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best to use, because in fact the relation arises from isospin
symmetry assuming CP = PP = PEW,P = PC

EW,P = 0.
(However, if CP is negligibly small (though not zero) com-
pared to TT , (20) will approximately hold.)

4 Analysis of B → PT decays
using the Isgur-Scora-Grinsteing-Wise model

Now, we present expressions for SU(3) amplitudes in-
volved in B → PT decays as calculated in the factor-
ization scheme as follows [14] (note that all the SU(3)
amplitudes with the subscript P vanish because those are
proportional to the matrix element 〈T |jµ|0〉):

T
(′)
T = i

GF√
2
V ∗

ubVud(s)(fP ε
∗
µνp

µ
Bp

ν
BF

B→T (m2
P ))a1,

C
(′)
T = i

GF√
2
V ∗

ubVud(s)(fP ε
∗
µνp

µ
Bp

ν
BF

B→T (m2
P ))a2,

S
(′)
T = −i

GF√
2
V ∗

tbVtd(s)(fP ε
∗
µνp

µ
Bp

ν
BF

B→T (m2
P ))

× (a3 − a5),
P

(′)
T = −i

GF√
2
V ∗

tbVtd(s)(fP ε
∗
µνp

µ
Bp

ν
BF

B→T (m2
P ))

× (a4 − 2a6Xqq′),

P
(′)
EW,T = −i

GF√
2
V ∗

tbVtd(s)(fP ε
∗
µνp

µ
Bp

ν
BF

B→T (m2
P ))

× 3
2
(a7 − a9),

P
C(′)
EW,T = −i

GF√
2
V ∗

tbVtd(s)(fP ε
∗
µνp

µ
Bp

ν
BF

B→T (m2
P ))

× 3
2
(a10 − 2a8Xqq′), (23)

where

FB→T (m2
P ) = k(m

2
P ) + (m2

B −m2
T )b+(m

2
P )

+ m2
P b−(m

2
P ), (24)

Xqq′ =
m2

P

(mb +mq′)(mq +mq′)
. (25)

Here the effective coefficients ai are defined by ai = ceffi +
ξceffi+1 (i is odd) and ai = ceffi + ξceffi−1 (i is even) with the
effective WC’s ceffi at the scale mb [11,15], and by treating
ξ ≡ 1/Nc (Nc denotes the effective number of color) as an
adjustable parameter. The last term with b− in (24) gives
a negligible contribution to the decay amplitude due to
the small mass factor. With Tables 1, 2 and the above re-
lations (23), one can easily write down in the factorization
scheme the amplitude of any B → PT mode shown in the
tables. For example, from Table 1 and the relations (23),
the amplitude of the process B+ → π+a02 can be written2

A(B+ → π+a02) = − 1√
2

2 In the factorization scheme, we use the usual phase con-
vention for the pseudoscalar and the tensor mesons as follows:
π0(a0

2) = (1/
√
2)(uū − dd̄), π−(a−

2 ) = ūd, K−(K∗−
2 ) = ūs

×
(
TT + CP + PT − PP + PEW,P +

2
3
PC

EW,T

+
1
3
PC

EW,P

)

= i
GF

2
fπε

∗
µνp

µ
Bp

ν
BF

B→a0
2(m2

π) (26)

× {V ∗
ubVuda1 − V ∗

tbVtd[a4 + a10 − 2(a6 + a8)Xdu]} .
Here we have used the fact that CP , PP , PEW,P , and
PC

EW,P with the subscript P all vanish. In the appendix,
expressions for all the amplitudes of B → PT decays are
presented as calculated in the factorization scheme.

To calculate the unpolarized decay rates for B → PT ,
we sum over polarizations of the tensor meson T using the
following formula [2]:

∑
λ

εαβ(pT , λ)ε∗µν(pT , λ) =
1
2
(θαµθβν+θβµθαν)− 1

3
θαβθµν ,

(27)
where θαβ = −gαβ + (pT )α(pT )β/m2

T . Then, the decay
rate for B → PT is given by

Γ (B → PT ) =
|pP |5
12πm2

T

(
mB

mT

)2 ∣∣∣∣A(B → PT )
ε∗µνp

µ
Bp

ν
B

∣∣∣∣
2

, (28)

where |pP | is the magnitude of the three-momentum of the
final state particle P or T (|pP | = |pT |) in the rest frame
of the B meson. The CP asymmetry, ACP , is defined by

ACP =
B(b→ f) − B(b̄→ f̄)
B(b→ f) + B(b̄→ f̄)

, (29)

where b and f denote b quark and a generic final state,
respectively.

We calculate the branching ratios and the CP asym-
metries for the B → PT decay modes for various input
parameter values. The predictions are sensitive to several
input parameters such as the form factors, the strange
quark mass, the parameter ξ ≡ 1/Nc, the CKM matrix
elements and, in particular, the weak phase γ. In a recent
work [11] on charmless B decays to two light mesons such
as PP and V P , it has been shown that the favored values
of the input parameters are

ξ ≈ 0.45, ms(mb) ≈ 85MeV, γ ≈ 110◦,
Vcb = 0.040, and |Vub/Vcb| = 0.087,

in order to get the best fit to the recent experimental data
from the CLEO collaboration. For our numerical calcula-
tions, we use the following values of the decay constants
(in MeV units) [10,15,16]:

fπ = 132, fη = 131, fη′ = 118, fK = 162.

We use the values of the form factors for the B → T
transition calculated in the ISGW model [4]. The strange
quark mass ms is in considerable doubt: i.e., QCD sum
rules give ms(1GeV) = (175± 25)MeV and lattice gauge
theory gives ms(2GeV) = (100 ± 20 ± 10)MeV in the
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Table 3. The branching ratios for B → PT decay modes with ∆S = 0. The second and the
third columns correspond to the cases of sets of the parameters: {ξ = 0.1, ms = 85MeV,
γ = 110◦} and {ξ = 0.1, ms = 100MeV, γ = 65◦}, respectively. Similarly, the fourth and
the fifth columns corresponds to the cases: {ξ = 0.3, ms = 85MeV, γ = 110◦} and {ξ = 0.3,
ms = 100MeV, γ = 65◦}, respectively. The sixth and the seventh columns correspond to the
cases: {ξ = 0.5, ms = 85MeV, γ = 110◦} and {ξ = 0.5, ms = 100MeV, γ = 65◦}, respectively

Decay mode B(10−8) B(10−8) B(10−8) B(10−8) B(10−8) B(10−8)

B+ → π+a0
2 45.41 44.82 40.32 39.82 35.54 35.11

B+ → π+f2 49.31 48.67 43.79 43.24 38.59 38.13
B+ → π+f ′

2 0.46 0.46 0.41 0.40 0.36 0.36
B+ → π0a+

2 1.78 1.52 0.029 0.048 2.05 2.38
B+ → ηa+

2 5.81 6.02 5.20 3.94 7.09 4.48
B+ → η′a+

2 27.19 22.97 23.02 17.93 20.33 14.45
B+ → K̄0K∗+

2 0.025 0.013 0.032 0.019 0.041 0.026
B0 → π+a−

2 85.91 84.80 76.29 75.34 67.23 66.44
B0 → π0a0

2 0.84 0.72 0.014 0.023 0.97 1.12
B0 → π0f2 0.92 0.78 0.015 0.025 1.05 1.22
B0 → π0f ′

2 0.009 0.007 0.0001 0.0001 0.010 0.011
B0 → ηa0

2 2.75 2.85 2.46 1.86 3.36 2.12
B0 → ηf2 2.99 3.09 2.67 2.02 3.65 2.30
B0 → ηf ′

2 0.03 0.03 0.025 0.019 0.024 0.021
B0 → η′a0

2 12.86 10.87 10.89 8.48 9.62 6.83
B0 → η′f2 14.00 10.87 11.85 9.23 10.47 7.44
B0 → η′f ′

2 0.13 0.11 0.11 0.085 0.096 0.068
B0 → K̄0K∗0

2 0.023 0.012 0.030 0.017 0.038 0.024

quenched lattice calculation [17]. In this analysis we use
two representative values of ms = 100MeV and ms =
85MeV at mb scale. Current best estimates for CKM ma-
trix elements are Vcb = 0.0381 ± 0.0021 and |Vub/Vcb| =
0.085 ± 0.019 [18]. We use Vcb = 0.040 and |Vub/Vcb| =
0.087. It is known that there exists a discrepancy in the
values of γ extracted from CKM fitting in the ρ–η plane
[19] and from the χ2 analysis of non-leptonic decays of the
B mesons [20,21]. The value of γ obtained from unitar-
ity triangle fitting is in the range of 60◦ ∼ 80◦. But in
the analysis of non-leptonic B decay, the possibility of a
larger γ has been discussed by Deshpande et al. [20] and
He et al. [21]. The obtained value of γ is γ = 90◦ ∼ 140◦.
In our calculations we use the two representative values of
γ = 110◦ and γ = 65◦. In Tables 3–6, we show the branch-
ing ratios and the CP asymmetries for B → PT decays
with either ∆S = 0 or |∆S| = 1. In the tables the sec-
ond and the third columns correspond to the sets of input
parameters

{ξ = 0.1,ms = 85MeV, γ = 1100}
and

{ξ = 0.1,ms = 100MeV, γ = 650},
respectively. Similarly, the fourth and the fifth columns
correspond to the cases

{ξ = 0.3,ms = 85MeV, γ = 110◦}

and

{ξ = 0.3,ms = 100MeV, γ = 65◦},
respectively. The sixth and the seventh columns corre-
spond to the cases

{ξ = 0.5,ms = 85MeV, γ = 110◦}
and

{ξ = 0.5,ms = 100MeV, γ = 65◦},
respectively. Here ξ ≡ 1/Nc = 0.3 corresponds to the case
of naive factorization (Nc = 3). It is known that in B → D
decays the generalized factorization has been successfully
used with the favored value of ξ ≈ 0.5 [22]. Also, as men-
tioned above, a recent analysis of charmless B decays to
two light mesons such as PP and V P [11] shows that
ξ ≈ 0.45 is favored with certain values of the other pa-
rameters for the best fit to the recent CLEO data.

The branching ratios and the CP asymmetries for B→
PT decay modes with ∆S = 0 are shown in Table 3 and 4.
Among the ∆S = 0 modes, the decay modes B+ → π+a02,
B+ → π+f2, and B0 → π+a−

2 have the relatively large
branching ratios of a few times 10−7. This prediction is
consistent with that based on flavor SU(3) symmetry. We
see that in the factorization scheme the following equality
between the branching ratios holds for any set of param-
eters given above: 2B(B+ → π+a02) ≈ B(B0 → π+a−

2 ),
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Table 4. The CP asymmetries for B → PT decay modes with
∆S = 0. The definitions for the columns are the same as those
in Table 3

Decay mode ACP ACP ACP ACP ACP ACP

B+ → π+a0
2 0.016 0.016 0.015 0.015 0.015 0.015

B+ → π+f2 0.016 0.016 0.015 0.015 0.015 0.015
B+ → π+f ′

2 0.016 0.016 0.015 0.015 0.015 0.015
B+ → π0a+

2 0.14 0.15 −0.89 −0.52 −0.13 −0.10
B+ → ηa+

2 0.59 0.55 −0.068 −0.087 −0.46 −0.71
B+ → η′a+

2 0.17 0.20 −0.021 −0.026 −0.22 −0.29
B+ → K̄0K∗+

2 0 0 0 0 0 0
B0 → π+a−

2 0.016 0.015 0.015 0.015 0.015 0.015
B0 → π0a0

2 0.14 0.15 −0.89 −0.52 −0.13 −0.10
B0 → π0f2 0.14 0.15 −0.89 −0.52 −0.13 −0.10
B0 → π0f ′

2 0.14 0.14 −0.89 −0.52 −0.13 −0.10
B0 → ηa0

2 0.59 0.55 −0.068 −0.087 −0.46 −0.71
B0 → ηf2 0.59 0.59 −0.068 −0.087 −0.46 −0.71
B0 → ηf ′

2 0.59 0.55 −0.068 −0.087 −0.46 −0.71
B0 → η′a0

2 0.17 0.20 −0.021 −0.026 0.22 −0.29
B0 → η′f2 0.17 0.20 −0.021 −0.026 −0.22 −0.29
B0 → η′f ′

2 0.17 0.20 −0.021 −0.026 −0.22 −0.29
B0 → K̄0K∗0

2 0 0 0 0 0 0

as discussed in (20). (A little deviation from the exact
equality arises from breaking of isospin symmetry.) We
also see from Table 3 that B(B+ → π0a+2 ) is much smaller
than B(B+ → π+a02) by an order of magnitude or even
three orders of magnitude depending on the values of the
input parameters, because in factorization the dominant
contribution to the former mode arises from the color-
suppressed tree diagram (CT ), while the dominant one to
the latter mode arises from the color-favored tree diagram
(TT ). Note that in flavor SU(3) symmetry the amplitude
for B+ → π+a02 has the color-favored tree contribution
TP constructive to the color-suppressed tree contribution
CT (in addition to small contributions from the penguin
diagrams). (Also recall that the magnitude of TP can be
possibly measured by (11).) In case that TP is not small
compared to TT , B(B+ → π0a+2 ) can be comparable to
B(B+ → π+a02). Therefore, measurement of the modes
B → πa2 in future experiments will provide important
information on the above discussion. Some ∆S = 0 pro-
cesses such as B+ → η′a+2 , B

0 → η′a02, and B
0 → η′f2

have branching ratios of order of 10−7. The branching ra-
tios of the other processes are order of 10−8 or less. The
CP asymmetry for B+ → η′a+2 is relatively large (about
20% or larger) with a branching ratio of order of 10−7

for ξ = 0.5 and 0.1. The CP asymmetry for B+ → ηa+2 ,
B0 → ηa02, ηf2 can be as large as 71% for ξ = 0.5, with
the branching ratios of O(10−8).

Tables 5 shows the branching ratios for |∆S| = 1 de-
cay processes. In |∆S| = 1 decays, the relevant penguin
diagrams give a dominant contribution to the decay rates.
We see that the branching ratios for |∆S| = 1 decays are
in the range between O(10−7) and O(10−10), similar to

those for ∆S = 0 decays. The modes B+(0) → η′K∗+(0)
2

have relatively larger branching ratios of O(10−7). In con-
trast, the modes B+(0) → ηK

∗+(0)
2 have the very small

branching ratios of O(10−9) to O(10−10). Based on flavor
SU(3) symmetry, this fact has been expected by the obser-
vation that the penguin contributions P ′ and S′ interfere
constructively for B+(0) → η′K∗+(0)

2 , but destructively for
B+(0) → ηK

∗+(0)
2 . From (23), we see that P ′

T and S′
T are

proportional to (a4 − 2a6Xss) and (a3 − a5), respectively,
in addition to other common factors. Indeed, in the fac-
torization scheme, since (a4 − 2a6Xss) and (a3 − a5) have
the same sign (all positive), the combination (2P ′

T +4S′
T )

appearing in B+(0) → η′K∗+(0)
2 causes constructive in-

terference, while the combination (−P ′
T + S′

T ) appear-
ing in B+(0) → ηK

∗+(0)
2 causes destructive interference

(see the appendix). Thus the predictions for these de-
cay modes are consistent in both approaches. The modes
B+ → π0K∗+

2 and B0 → π0K∗0
2 have almost the same

branching ratios of O(10−8) in the factorization scheme
(also see the appendix). In flavor SU(3) symmetry, as
shown in Table 2, the decay amplitudes for these modes
have contributions from P ′

P or T ′
P . Thus, as discussed in

the previous section, if P ′
P or T ′

P is not very suppressed
compared to C ′

T , then there would be a sizable discrep-
ancy in B(B+ → π0K∗+

2 ) ≈ B(B0 → π0K∗0
2 ), and in

principle this can be tested in experiment. The terms
− (
T ′

P + P ′
P + (2/3)PC′

EW,P

)
and P ′

P − (1/3)PC′
EW,P can be

determined by measuring the branching ratios for B0 →
π−K∗+

2 and B+ → π+K∗0
2 , respectively. The CP asym-

metries ACP in |∆S| = 1 decays are shown in Table 6.
The ACP ’s in most modes are expected to be quite small.
In B+(0) → ηK

∗+(0)
2 , ACP can be as large as 92%, but

the corresponding branching ratio is as small as about
O(10−9).

5 Conclusion

We have analyzed exclusive charmless decays, B → PT ,
in the schemes of both flavor SU(3) symmetry and gener-
alized factorization. Using the flavor SU(3) symmetry, we
have decomposed all the amplitudes for decays B → PT
into linear combinations of the relevant SU(3) amplitudes.
Based on the decomposition, we have shown that certain
decay modes, such as B+ → π+a02, π

+f2 and B0 → π+a−
2

in ∆S = 0 decays, and B+(0) → η′K∗+(0)
2 in |∆S| = 1

decays, are expected to have the largest decay rates, so
these modes can be preferable to find in future experi-
ments. Certain ways to test the validity of the factoriza-
tion scheme have been presented by emphasizing the in-
terplay between both approaches and carefully combining
the predictions from both approaches. In order to bridge
the flavor SU(3) approach and the factorization approach,
we have explicitly presented a set of relations between
a flavor SU(3) amplitude and the corresponding ampli-
tude in factorization in B → PT decays. To calculate the
branching ratios for B → PT decays, we have used the
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Table 5. The branching ratios for B → PT decay modes with |∆S| = 1. The definitions for the
columns are the same as those in Table 3

Decay mode B(10−8) B(10−8) B(10−8) B(10−8) B(10−8) B(10−8)

B+ → K+a0
2 4.31 5.77 3.81 5.08 3.34 4.43

B+ → K+f2 4.69 6.27 4.14 5.52 3.63 4.82
B+ → K+f ′

2 0.044 0.058 3.84 0.051 0.037 0.045
B+ → K0a+

2 5.08 1.22 6.22 1.97 7.47 2.91
B+ → π0K∗+

2 1.13 1.55 1.09 1.05 1.19 0.75
B+ → ηK∗+

2 0.10 0.23 0.035 0.22 0.077 0.31
B+ → η′K∗+

2 43.09 26.58 44.96 29.98 46.91 33.64
B0 → K+a−

2 8.16 10.92 7.21 9.61 6.32 8.39
B0 → K0a0

2 2.40 0.58 2.94 0.93 3.53 1.38
B0 → K0f2 2.61 0.63 3.20 1.01 3.84 1.50
B0 → K0f ′

2 0.024 0.006 0.030 0.009 0.036 0.014
B0 → π0K∗0

2 1.05 1.45 1.02 0.98 1.11 0.70
B0 → ηK∗0

2 0.095 0.21 0.033 0.21 0.072 0.29
B0 → η′K∗0

2 40.14 24.76 41.88 27.93 43.70 31.34

full effective Hamiltonian including all the penguin oper-
ators which are essential to analyze the |∆S| = 1 pro-
cesses and to calculate CP asymmetries. We have also
used the non-relativistic quark model proposed by Isgur,
Scora, Grinstein, and Wise to obtain the form factors de-
scribing B → T transitions. As shown in Tables 3 and 5,
the branching ratios vary from O(10−7) to O(10−10).

Consistent with the prediction from the flavor SU(3)
analysis, the decay modes such as B+ → π+a02, π

+f2,
B0 → π+a−

2 and B+(0) → η′K∗+(0)
2 as well as B+ → η′a+2

have branching ratios of order of 10−7. In particular, the
branching ratio for the mode B0 → π+a−

2 can be as large
as almost O(10−6). We have identified the decay modes
where the CP asymmetries are expected to be large, such
as B → η′a+2 , ηa

+
2 , ηa

0
2, ηf2 in ∆S = 0 decays, and

B+(0) → ηK
∗+(0)
2 in |∆S| = 1 decays. Due to possible

uncertainties in the hadronic form factors of B → PT
and non-factorizaton effects, the predicted branching ra-
tios could be increased. Although experimentally challeng-
ing, the exclusive charmless decays, B → PT , can proba-
bly be carried out in detail in hadronicB experiments such
as BTeV and LHC-B, where more than 1010 B mesons will
be produced per year, as well as at present asymmetric B
factories of Belle and Babar.
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Appendix

In this appendix, we present expressions for all the decay
amplitudes of B → PT modes shown in Tables 1 and 2

Table 6. The CP asymmetries for B → PT decay modes with
|∆S| = 1. The definitions for the columns are the same as those
in Table 3

Decay mode ACP ACP ACP ACP ACP ACP

B+ → K+a0
2 −0.11 0.022 −0.11 0.022 −0.11 0.022

B+ → K+f2 −0.12 0.022 −0.11 0.022 −0.11 0.022
B+ → K+f ′

2 −0.12 0.022 −0.11 0.022 −0.11 0.022
B+ → K0a+

2 0 0 0 0 0 0
B+ → π0K∗+

2 0.006 0.004 −0.001 −0.001 −0.007 −0.010
B+ → ηK∗+

2 0.65 0.39 −0.21 −0.043 −0.92 −0.31
B+ → η′K∗+

2 0.005 0.006 −0.001 −0.001 −0.005 −0.005
B0 → K+a−

2 −0.12 0.022 −0.11 0.022 −0.11 0.022
B0 → K0a0

2 0 0 0 0 0 0
B0 → K0f2 0 0 0 0 0 0
B0 → K0f ′

2 0 0 0 0 0 0
B0 → π0K∗0

2 0.006 0.004 −0.001 −0.001 −0.007 −0.010
B0 → ηK∗0

2 0.65 0.39 −0.21 −0.043 −0.92 −0.31
B0 → η′K∗0

2 0.005 0.006 −0.001 −0.001 −0.005 −0.005

as calculated in the factorization scheme. Below we use
FB→T and Xqq′ defined in (24) and (25).

(1) B → PT (∆S = 0) decays.

A(B+ → π+a02) (30)

= i
GF

2
fπε

∗
µνp

µ
Bp

ν
BF

B→a0
2(m2

π)

× {V ∗
ubVuda1 − V ∗

tbVtd[a4 + a10 − 2(a6 + a8)Xdu]} ,
A(B+ → π+f2) (31)

= i
GF

2
cosφT fπε

∗
µνp

µ
Bp

ν
BF

B→f2(m2
π)

× {V ∗
ubVuda1 − V ∗

tbVtd[a4 + a10 − 2(a6 + a8)Xdu]} ,
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A(B+ → π+f ′
2) (32)

= i
GF

2
sinφT fπε

∗
µνp

µ
Bp

ν
BF

B→f2(m2
π)

× {V ∗
ubVuda1 − V ∗

tbVtd[a4 + a10 − 2(a6 + a8)Xdu]} ,
A(B+ → π0a+2 ) (33)

= i
GF

2
fπε

∗
µνp

µ
Bp

ν
BF

B→a+
2 (m2

π)

×
{
V ∗

ubVuda2 − V ∗
tbVtd

[
−a4 + 3

2
a7 − 3

2
a9 +

1
2
a10

+2
(
a6 − 1

2
a8

)
Xdd

]}
,

A(B+ → ηa+2 ) (34)

= i
GF√
2

1√
3
fηε

∗
µνp

µ
Bp

ν
BF

B→a+
2 (m2

η)

×
{
V ∗

ubVuda2 − V ∗
tbVtd

[
a3 + a4 − a5 + a7 − a9 − 1

2
a10

−2
(
a6 − 1

2
a8

)
Xdd

]}
,

A(B+ → η′a+2 ) (35)

= i
GF√
2

1√
6
fη′ε∗µνp

µ
Bp

ν
BF

B→a+
2 (m2

η′)

×
{
V ∗

ubVuda2 − V ∗
tbVtd

[
4a3 + a4 − 4a5 − 1

2
a7

+
1
2
a9 − 1

2
a10 − 2

(
a6 − 1

2
a8

)
Xdd

]}
,

A(B+ → K̄0K∗+
2 ) (36)

= −i
GF√
2
fKε

∗
µνp

µ
Bp

ν
BF

B→K∗+
2 (m2

K)V ∗
tbVtd

×
[
a4 − 1

2
a10 − 2

(
a6 − 1

2
a8

)
Xds

]
,

A(B0 → π+a−
2 ) (37)

= i
GF√
2
fπε

∗
µνp

µ
Bp

ν
BF

B→a−
2 (m2

π)

× {V ∗
ubVuda1 − V ∗

tbVtd[a4 + a10 − 2(a6 + a8)Xdu]} ,
A(B0 → π0a02) (38)

= i
GF

2
√
2
fπε

∗
µνp

µ
Bp

ν
BF

B→a0
2(m2

π)

×
{
V ∗

ubVud(−a2) − V ∗
tbVtd

[
a4 − 3

2
a7 +

3
2
a9 − 1

2
a10

−2
(
a6 − 1

2
a8

)
Xdd

]}
,

A(B0 → π0f2) (39)

= i
GF

2
√
2
cosφT fπε

∗
µνp

µ
Bp

ν
BF

B→f2(m2
π)

×
{
V ∗

ubVud(−a2) − V ∗
tbVtd

[
a4 − 3

2
a7 +

3
2
a9 − 1

2
a10

−2
(
a6 − 1

2
a8

)
Xdd

]}
,

A(B0 → π0f ′
2) (40)

= i
GF

2
√
2
sinφT fπε

∗
µνp

µ
Bp

ν
BF

B→f ′
2(m2

π)

×
{
V ∗

ubVud(−a2) − V ∗
tbVtd

[
a4 − 3

2
a7 +

3
2
a9 − 1

2
a10

−2
(
a6 − 1

2
a8

)
Xdd

]}
,

A(B0 → ηa02) (41)

= i
GF√
2

1√
6
fηε

∗
µνp

µ
Bp

ν
BF

B→a0
2(m2

η)

×
{
V ∗

ubVuda2 − V ∗
tbVtd

[
a3 + a4 − a5 + a7 − a9 − 1

2
a10

−2
(
a6 − 1

2
a8

)
Xdd

]}
,

A(B0 → ηf2) (42)

= i
GF√
2

1√
6
cosφT fηε

∗
µνp

µ
Bp

ν
BF

B→f2(m2
η)

×
{
V ∗

ubVuda2 − V ∗
tbVtd

[
a3 + a4 − a5 + a7 − a9 − 1

2
a10

−2
(
a6 − 1

2
a8

)
Xdd

]}
,

A(B0 → ηf ′
2) (43)

= i
GF√
2

1√
6
sinφT fηε

∗
µνp

µ
Bp

ν
BF

B→f ′
2(m2

η)

×
{
V ∗

ubVuda2 − V ∗
tbVtd

[
a3 + a4 − a5 + a7 − a9 − 1

2
a10

− 2
(
a6 − 1

2
a8

)
Xdd

]}
,

A(B0 → η′a02) (44)

= i
GF√
2

1
2
√
3
fη′ε∗µνp

µ
Bp

ν
BF

B→a0
2(m2

η′)

×
{
V ∗

ubVuda2 − V ∗
tbVtd

[
4a3 + a4 − 4a5 − 1

2
a7 +

1
2
a9

−1
2
a10 − 2

(
a6 − 1

2
a8

)
Xdd

]}
,

A(B0 → η′f2) (45)

= i
GF√
2

1
2
√
3
cosφT fη′ε∗µνp

µ
Bp

ν
BF

B→f2(m2
η′)

×
{
V ∗

ubVuda2 − V ∗
tbVtd

[
4a3 + a4 − 4a5 − 1

2
a7 +

1
2
a9

−1
2
a10 − 2

(
a6 − 1

2
a8

)
Xdd

]}
,

A(B0 → η′f ′
2) (46)
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= i
GF√
2

1
2
√
3
sinφT fη′ε∗µνp

µ
Bp

ν
BF

B→f2(m2
η′)

×
{
V ∗

ubVuda2 − V ∗
tbVtd

[
4a3 + a4 − 4a5 − 1

2
a7 +

1
2
a9

−1
2
a10 − 2

(
a6 − 1

2
a8

)
Xdd

]}
,

A(B0 → K̄0K∗0
2 ) (47)

= −i
GF√
2
fKε

∗
µνp

µ
Bp

ν
BF

B→K∗0
2 (m2

K)V ∗
tbVtd

×
[
a4 − 1

2
a10 − 2

(
a6 − 1

2
a8

)
Xds

]
,

(2) B → PT (|∆S| = 1) decays.

A(B+ → K+a02) (48)

= i
GF

2
fKε

∗
µνp

µ
Bp

ν
BF

B→a0
2(m2

K),

× {V ∗
ubVusa1 − V ∗

tbVts[a4 + a10 − 2(a6 + a8)Xsu]}
A(B+ → K+f2) (49)

= i
GF

2
cosφT fKε

∗
µνp

µ
Bp

ν
BF

B→f2(m2
K)

× {V ∗
ubVusa1 − V ∗

tbVts[a4 + a10 − 2(a6 + a8)Xsu]} ,
A(B+ → K+f ′

2) (50)

= i
GF

2
sinφT fKε

∗
µνp

µ
Bp

ν
BF

B→f ′
2(m2

K)

× {V ∗
ubVusa1 − V ∗

tbVts[a4 + a10 − 2(a6 + a8)Xsu]} ,
A(B+ → K̄0a+2 ) (51)

= −i
GF√
2
fKε

∗
µνp

µ
Bp

ν
BF

B→a+
2 (m2

K)V ∗
tbVts

×
[
a4 − 1

2
a10 − 2

(
a6 − 1

2
a8

)
Xsd

]
,

A(B+ → π0K∗+
2 ) (52)

= i
GF

2
fπε

∗
µνp

µ
Bp

ν
BF

B→K∗+
2 (m2

π)

×
[
V ∗

ubVusa2 − V ∗
tbVts

(
3
2
a7 − 3

2
a9

)]
,

A(B+ → ηK∗+
2 ) (53)

= i
GF√
2

1√
3
fηε

∗
µνp

µ
Bp

ν
BF

B→K∗+
2 (m2

η)

×
{
V ∗

ubVusa2 − V ∗
tbVts

[
a3 − a4 − a5 + a7 − a9 + 1

2
a10

+ 2
(
a6 − 1

2
a8

)
Xss

]}
,

A(B+ → η′K∗+
2 ) (54)

= i
GF√
2

1√
6
fη′ε∗µνp

µ
Bp

ν
BF

B→K∗+
2 (m2

η′)

×
{
V ∗

ubVusa2 − V ∗
tbVts

[
4a3 + 2a4 − 4a5 − 1

2
a7 +

1
2
a9

− a10 − 4
(
a6 − 1

2
a8

)
Xss

]}
,

A(B0 → K+a−
2 ) (55)

= i
GF√
2
fKε

∗
µνp

µ
Bp

ν
BF

B→a−
2 (m2

K)

× {V ∗
ubVusa1 − V ∗

tbVts[a4 + a10 − 2(a6 + a8)Xsu]} ,
A(B0 → K0a02) (56)

= i
GF

2
fKε

∗
µνp

µ
Bp

ν
BF

B→a0
2(m2

K)V ∗
tbVts

×
[
a4 − 1

2
a10 − 2

(
a6 − 1

2
a8

)
Xsd

]
,

A(B0 → K0f2) (57)

= i
GF

2
cosφT fKε

∗
µνp

µ
Bp

ν
BF

B→f2(m2
K)V ∗

tbVts

×
[
a4 − 1

2
a10 − 2

(
a6 − 1

2
a8

)
Xsd

]
,

A(B0 → K0f ′
2) (58)

= i
GF

2
sinφT fKε

∗
µνp

µ
Bp

ν
BF

B→f ′
2(m2

K)V ∗
tbVts

×
[
a4 − 1

2
a10 − 2

(
a6 − 1

2
a8

)
Xsd

]
,

A(B0 → π0K∗0
2 ) (59)

= i
GF

2
fπε

∗
µνp

µ
Bp

ν
BF

B→K∗0
2 (m2

π)

×
[
V ∗

ubVusa2 − V ∗
tbVts

(
3
2
a7 − 3

2
a9

)]
,

A(B0 → ηK∗0
2 ) (60)

= i
GF√
2

1√
3
fηε

∗
µνp

µ
Bp

ν
BF

B→K∗0
2 (m2

η)

×
{
V ∗

ubVusa2 − V ∗
tbVts

[
a3 − a4 − a5 + a7 − a9 + 1

2
a10

+2
(
a6 − 1

2
a8

)
Xss

]}
,

A(B0 → η′K∗0
2 ) (61)

= i
GF√
2

1√
6
fη′ε∗µνp

µ
Bp

ν
BF

B→K∗0
2 (m2

η′)

×
{
V ∗

ubVusa2 − V ∗
tbVts

[
4a3 + 2a4 − 4a5 − 1

2
a7 +

1
2
a9

− a10 − 4
(
a6 − 1

2
a8

)
Xss

]}
.
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